Quantcast
Channel: GMAT Club Forum - latest posts
Viewing all articles
Browse latest Browse all 420781

Re: If a regular hexagon is inscribed in a circle with a radius

$
0
0
In an regular hexagon inscribed in a circle, its side is equal the radius.
We can divide the hexagon in 6 triangles each with the base of 4. The heigth will equal \sqrt{4^2-2^2}=\sqrt{12}=2\sqrt{3}. To obtain this just use Pythagoras, the hypotenuse of each triangle it's the radius, and the bases it's \frac{4}{2}=2.

Now you have the height of each triangle, so A_t=(4*2\sqrt{3})/2=4\sqrt{3}.

A_h=6*A_t=6*4\sqrt{3}=24\sqrt{3}

Viewing all articles
Browse latest Browse all 420781

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>