hsinam3 wrote:
Find the remainder of 2^100/12
A. 4
B. 2
C. 8
D. 1
E. none
A. 4
B. 2
C. 8
D. 1
E. none
(2^4)^25 = 16^25 = (12+4)^25
Using binomial to find remainder. (x +a)^n divided by x is a ^n
4^25 = (16)^12 * 4 = (12+4)^12 * 4
4^13 = (16)^6 * 4 = (!2+4)^6*4
4^7 = (16)^3 * 4 = (12+4)^3*4
4^4 = (16)*16 = 4*4 = 16
Hence remainder 4.