Quantcast
Channel: GMAT Club Forum - latest posts
Viewing all articles
Browse latest Browse all 420781

Re: Find the remainder of 2^100/12

$
0
0
hsinam3 wrote:
Find the remainder of 2^100/12

A. 4
B. 2
C. 8
D. 1
E. none


(2^4)^25 = 16^25 = (12+4)^25
Using binomial to find remainder. (x +a)^n divided by x is a ^n
4^25 = (16)^12 * 4 = (12+4)^12 * 4
4^13 = (16)^6 * 4 = (!2+4)^6*4
4^7 = (16)^3 * 4 = (12+4)^3*4
4^4 = (16)*16 = 4*4 = 16

Hence remainder 4.

Viewing all articles
Browse latest Browse all 420781

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>