Quantcast
Channel: GMAT Club Forum - latest posts
Viewing all articles
Browse latest Browse all 420585

Re: Permutation Problem

$
0
0
Bunuel wrote:
tania wrote:
In how many different ways can the letters A,A,B,B,B,C,D,E be arranged if the letter C must be to the right of the letter D?
A.1680
B.2160
C.2520
D.3240
E.3360

Can someone explain how I should approach to solve the above problem?


We have 8 letters out of which A appears twice and B appears three time. Total number of permutation of these letters (without restriction) would be: \frac{8!}{2!3!}=3360.

Now, in half of these cases D will be to the right of C and in half of these cases to the left, hence the final answer would be \frac{3360}{2}=1680

Answer: A.


Hi Bunnel,

If the question were:

Cases in which A is to the right of C?
tot=8!/2!*3!=3360

A to right of C = 3360/(2!)^2?

Viewing all articles
Browse latest Browse all 420585

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>