Quantcast
Channel: GMAT Club Forum - latest posts
Viewing all articles
Browse latest Browse all 420581

Re: If n is an integer and 1/(n+1)

$
0
0
gmacforjyoab wrote:
LM wrote:
If n is an integer and \frac{1}{n+1}<\frac{1}{31}+\frac{1}{32}+\frac{1}{33}<\frac{1}{n}, then what is the value of n?

A) 9
B) 10
C) 11
D) 12
E) 13



Did it on similar grounds as Bunuel

1/(n+1) < ( 1/31 + 1/32 + 1/33) < 1/n ...................... hence n+1 > a > n--------------------------------- eq 1
Substitute ( 1/31 + 1/32 + 1/33) to be 1/a
1/(n+1) < ( 1/a) < 1/n
1/a > 3/33 ( i.e 1/11) ... Hence a<11
from eq 1 --- n+1 >a>11 ................ n<a<11.. hence n <11

1/a < 3/31 ( or 1/10)..... hence a>10
from eq 1 --- n+1>a>10 .... hence n+1>10 ... n> 9

Ans n=10



I did it on the same grounds..

Answers is coming out to be 10.

Viewing all articles
Browse latest Browse all 420581

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>