Quantcast
Channel: GMAT Club Forum - latest posts
Viewing all articles
Browse latest Browse all 420581

Re: If x#0 and x#1, and if x is replaced by 1/x everywhere in th

$
0
0
Bunuel wrote:
(\frac{x+1}{x-1})^2

If x#0 and x#1, and if x is replaced by 1/x everywhere in the expression above, then the resulting expression is equivalent to


A. (\frac{x+1}{x-1})^2

B. (\frac{x-1}{x+1})^2

C. \frac{x^2+1}{1-x^2}

D. \frac{x^2-1}{x^2+1}

E. -(\frac{x-1}{x+1})^2

(\frac{\frac{1}{x}+1}{\frac{1}{x}-1})^2=(\frac{\frac{1+x}{x}}{\frac{1-x}{x}})^2=(\frac{1+x}{1-x})^2=(\frac{x+1}{x-1})^2.

Answer: A.


I dont get (\frac{\frac{1}{x}+1}{\frac{1}{x}-1})^2=(\frac{\frac{1+x}{x}}{\frac{1-x}{x}})^2.. could you please explain your steps in a few words?

Viewing all articles
Browse latest Browse all 420581

Trending Articles