Quantcast
Channel: GMAT Club Forum - latest posts
Viewing all articles
Browse latest Browse all 420781

Re: If M=(root)(4)+(cube root)(4)+(fourth root)(4), then the

$
0
0
If M=\sqrt{4}+\sqrt[3]{4}+\sqrt[4]{4}, then the value of M is:

A. Less than 3
B. Equal to 3
C. Between 3 and 4
D. Equal to 4
E. Greater than 4

Here is a little trick: any positive integer root from a number more than 1 will be more than 1.

For instance: \sqrt[1000]{2}>1.

Hence \sqrt[3]{4}>1 and \sqrt[4]{4}>1 --> M=\sqrt{4}+\sqrt[3]{4}+\sqrt[4]{4}=2+(number \ more \ then \ 1)+(number \ more \ then \ 1)>4

Answer: E.

OPEN DISCUSSION OF THIS QUESTION IS HERE: if-m-root-4-cube-root-4-fourth-root-4-then-the-93340.html

Viewing all articles
Browse latest Browse all 420781

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>