Quantcast
Channel: GMAT Club Forum - latest posts
Viewing all articles
Browse latest Browse all 420582

Re: Root. Modulus question

$
0
0
If x=|x| then don't we already know that x is positive? If that's the case then isn't #1) x=even irrelevant? Doesn't x HAVE to be positive?


VeritasPrepKarishma wrote:
WholeLottaLove wrote:
x = \sqrt{x^2}

So basically, what this says is the following:

x = |x|

So, x = x or x = -x

Firstly, this means that, for example:

x=5 or x=-5

Correct?

I guess where I get tripped up is here:

Let's say x=14 and x=|x| so x=x or x=-x

so

x=14
OR
x=-14

With #2 we are told that x is positive and the stem tells us that x=|x|. But isn't that unnecessary? doesn't x=|x| imply that x is positive anyways? Or, if this makes any sense, if x=x or x=-x then couldn't 14=-x?




I think you tripped up on what is given and what is to be found.

You are asked: Is x = \sqrt{x^2}?
You are asked: Is x equal to |x|?
The question doesn't tell us this. It wants us to answer whether it is true.

When is x=|x|? When x is non negative. If the statement tells us that x is non negative, we can say that yes, x is equal to |x|. Statement 2 tells us that x is positive. So it is sufficient alone.

Viewing all articles
Browse latest Browse all 420582

Trending Articles



<script src="https://jsc.adskeeper.com/r/s/rssing.com.1596347.js" async> </script>